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We analyze the zero-temperature full counting statistics �FCS� for the charge transfer across a biased tunnel
junction. We find the FCS from the eigenvalues of the density matrix of outgoing states of one lead. In the
general case of a general time-dependent bias and time-dependent transparency we solve for these eigenvalues
numerically. We report the FCS for the case of a step pulse applied between the leads and a constant barrier
transparency �this case is equivalent to Fermi-edge singularity problem�. We have also studied combinations of
a time-dependent barrier transparency and biases between the leads. In particular, we look at protocols which
excite the minimal number of excitations for a given charge transfer �low-noise electron source� and protocols
which maximize entanglement of charge states.
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I. INTRODUCTION

Charge fluctuations in mesoscopic devices are increas-
ingly important as the devices become smaller. At low tem-
peratures, the statistics of these fluctuations is determined by
quantum effects. Attention has focused on the full distribu-
tion of probabilities Pn for the transfer of n charges from one
part of a system to another—the so-called full counting sta-
tistics �FCS�.1 In fermionic systems, the quantum nature of
the system, and how it is driven by external stimuli, mani-
fests itself, even for noninteracting fermions, in the current-
current correlation function and the higher-order correlation
functions which are becoming increasingly accessible to
experiment.2–5

Much theoretical work has concentrated on the simplest
possible device, namely, a tunnel junction between two one-
dimensional leads.6–13 It has been shown that, if a bias pulse,
V�t�, is applied across a junction with fixed transparency at
low temperature, the tunneling processes induced by the
pulse are combinations of two elementary types of event
called unidirectional and bidirectional.12 It is also known that
the statistics of the transfer of charge induced by such pulses
depend strongly on the driving protocol. In contrast to a gen-
eral shape of ac pulse which leads to an indefinite number of
electronic excitations in the leads, an optimal ac signal,
which is composed of overlapping Lorentzian pulses, has
been found to excite a strictly finite number of excitations
per cycle and to bring the noise down to dc levels.7 The
minimal excitation states �MES�,11 created by such optimal
pulses, offer the prospect of being able to generate signals
with well-defined charge transfer down to the level of single-
electron emission. Coupled with the high Fermi velocity in
electronic systems there is the prospect of rapid solid-state
information transfer at a level useful for quantum informa-
tion processing.14–18 There have also been calculations of the
FCS of devices in which the interaction between electrons is
important. These include quantum dots operating in the
Coulomb-blockade regime19,20 and the Kondo limit,21 quan-
tum dots subject to temperature fluctuations22 and
superconducting,23,24 and molecular junctions.25 The treat-
ments of these have used schemes based on the Keldysh
formalism or master equations.

An area where the FCS have been studied is that of quan-
tum pumps. These can lead to the pumping of electrons from
one side of a tunneling barrier to the other. Several schemes
for operating a tunnel junction, which can lead to the transfer
of charges16,26 and produce entangled electron-hole pairs in
separate leads, have been proposed. Samuelsson and Büttiker
have proposed an orbital entangler, which works with
quantum-Hall edge states.27 Accurate control of the transpar-
ency may allow the generation and control of flying qubits
while Beenakker et al. have shown that such an electronic
entangler based on a biased point contact could reach the
theoretically maximum efficiency of 50%.28

If the quantum effects are not to be obscured by thermal
noise, the temperature 1 /� must be low enough that tf ��,
where tf is the measurement time �or inverse repeat fre-
quency for an ac measurement�. Working at temperatures
around 10 mK would require operating at frequencies around
200 MHz, and this is the temperature and frequency regime
used in some experiments.29 However, even at zero tempera-
ture the so-called equilibrium noise is present and diverges
logarithmically with the inverse repeat frequency or mea-
surement time tf. This equilibrium noise is present in both
the proposed MES protocol for generating charge transfer
and the protocol for the optimal electronic entangler.

Here we develop our approach to calculating the FCS for
a tunnel junction30 and examine protocols which we pro-
posed for suppressing the equilibrium noise both in the case
of the charge source and of the entangler.31 We show how to
solve for the FCS in the general case of fully time-dependent
barrier profile with dynamic bias pulses applied between the
leads. We compute the resulting FCS and induced entangle-
ment entropy for a number of profiles and, in particular,
those close to optimal �in the sense that they have low noise
in the case of electron sources or maximum entanglement�.
Our approach is motivated partly by the result of Abanov and
Ivanov �AI�,13 who on quite general grounds deduced con-
straints on the analytic properties of the characteristic func-
tion �generating function for the probability distribution Pn�.
Although they have recently argued that at any temperature,
the counting statistics can be regarded as generalized bino-
mial statistics in which electrons scatter off the barrier with
some effective transparency independently,32 our results are
all for zero temperature.
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The paper is organized as follows. In Sec. II we review
FCS and we give a short alternative derivation of the AI
formula. We then discuss the two “standard” special cases:
the biased contact with fixed transparency and a contact with
modulated barrier transparency. We establish a mapping be-
tween these two cases and use this to simplify the derivation
of the FCS for these two cases and to explore the relation to
the Fermi-edge singularity �FES� problem. In Sec. III we
describe a general purpose numerical procedure to solve for
the general case inaccessible to analytical techniques. We use
this to compute the effects of deviations from the ideal volt-
age pulses, which lead to minimal noise in the charge trans-
ferred across a tunnel barrier when operated as an electron
source, and to study protocols close to optimal for the gen-
eration of electron entanglement. Concluding remarks can be
found in Sec. IV.

II. FULL COUNTING STATISTICS

We consider a quantum point contact �QPC� at zero tem-
perature with time-dependent transparency, T�t�, connecting
two single-channel ballistic conductors, as illustrated in Fig.
1. We assume there is no inelastic scattering inside the QPC
or the leads. The two leads �assumed identical� are discon-
nected initially and contain noninteracting electrons in their
respective ground states �0�. Electrons in the disconnected
leads are described by the Hamiltonian H0=� j� jc j

†c j, where
we assume the system has a discrete energy spectrum. The
electron creation operators c† have been written as a vector
c†= �cL

† ,cR
†�, where cL,R

† is the creation operator for states in
the left and right lead, respectively. The ground state of a
single lead �0� is the Fermi sea, �0�=��j��cj

†��, where �� is the
“true” vacuum and � is the Fermi energy. Where necessary,
we will assume a cutoff of order the Fermi energy.

The two Fermi seas are initially uncoupled. Usually it is
assumed9 that the tunneling barrier is lowered at time t=0,
allowing electrons to tunnel between the two leads, and is
restored to fully reflective after a measurement time, tf. In
general, the evolution of outgoing states should be
described by solving the fully time-dependent Hamiltonian
H�t�=H0+H��t� with

H��t� = �
j,j�

c j
†M�t,� j,� j��c j�. �1�

The matrix M�t�=0 for t�0 and t� tf. However, if the scat-
tering potential varies slowly on the scale of the Wigner de-

lay time �d	�W�S−1 �S
�E , with 
=e=1, the properties of the

system can be determined from the instantaneous value of
scattering matrix S�t� evaluated on states at the Fermi energy

S�t,E = �� = � B�t� A�t�
− A��t� B��t�

	 . �2�

Here A�t� and B�t� are time-dependent transmission and re-
flection amplitudes and are determined by both the QPC gate
voltage and the bias voltage applied between the leads. This
relates eigenstates cj of H0, which we separate into incoming
aj and outgoing states bj, via

�bL�t�
bR�t�

	 = S�t��aL

aR
	 . �3�

We are interested in the distribution Pn, which is the prob-
ability that there is a net transfer of n charges from the left to
the right lead during the measurement period 0� t� tf. A
convenient way of characterizing the FCS, Pn, is via the
function ����,

���� = �
n=−



Pnei�n. �4�

The current, noise, and higher-order cumulants, 

Qm��, can
be computed from ����: 

Qm��= � �m ln���

��i��m ��=0, where m is the
order of the cumulant. The formula for the FCS is1,9,34

���� = det�1 + n�S†ei�LSe−i�L − 1�� , �5�

where n is the number operator for the fermions. The matrix
L projects onto states in the left lead: � 1 0

0 0 � in lead space. The
matrix inside the determinant is infinite dimensional in the
energy or time domain and 2�2 in lead space. Because of
the infinite dimensionality of the space of states in Eq. �5�,
careful regularization of the formula is required.9,34,35 For
example, at very high energies �→+, n=0, the argument of
the determinant approaches the identity and the contributions
remain finite and computable. However, when �→−,
n=1, and the matrix has the asymptotic form S†ei�LSe−i�L,
which makes the determinant ill defined for an infinitely
deep Fermi sea.

A simple and correctly regularized approach to the com-
putation of ���� works with the density matrix for the
outgoing states in one of the leads. The density
matrices for incoming states in both leads can be written
nin= 
0�aj

†aj�0�=nj =���−� j�, which is the Fermi-distribution
function at zero temperature. Fourier transformed to
the time domain, the density matrix has the form nin�t , t��
=d����−��ei�t−t����−��= i

2�
1

t−t�+i0
. The density matrix of the

outgoing states in, say, the left lead nout�t , t�� can be obtained
from Eq. �3�,

nout�t,t�� = 
0�bL
†�t�bL�t���0�

= B��t�nL
in�t,t��B�t�� + A��t�nR

in�t,t��A�t�� . �6�

In the second equation, we have used the fact that terms such
as 
0�aL

†aR�0� are zero because the incoming states between
different leads are uncorrelated.

FIG. 1. �Color online� A quantum point contact with time-
dependent bias voltage V�t� applied on the right lead. The transpar-
ency of the QPC, T�t�, is controlled by the gate voltage VG�t� �Ref.
33�.
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From nout, it is possible to compute the cumulants di-
rectly. For example, the second cumulant �noise� is36



Q2�� = 2� � dtdt�nin�t,t���1 − nin�t�,t����A�t��2�A�t���2

+ A��t�B�t�A�t��B��t��� . �7�

In the case, when the barrier transparency is switched on and
off with A�t�=A0=const for 0� t� tf and A�t�=0 otherwise,
and with no bias voltage applied between the leads, the so-
called equilibrium noise is obtained from the integral in Eq.

�7�: 

Q2��=
A0

2

�2 log tf�. Here � is the commonly used ultravio-
let energy cutoff on the order of Fermi energy. The logarith-
mic term is present for almost all profiles and not just abrupt
switching. It was found, for example, for the case of a Gauss-
ian switching profile.37

The eigenvalues, nj of nout allow for the direct computa-
tion of the FCS. We consider first a simple case, where only
one eigenvalue changes to nj and all other eigenvalues are
unchanged. Since all eigenvalues initially are either 0 or 1,
we need only to consider a change 0→nj or 1→nj.
In the first case, the probability of one additional particle
being transferred into state j from the right lead is nj, while
the probability, that no particle is added, �1−nj�. The
counting statistics follow from Eq. �4� and are given by
� j���=1−nj +ei�nj with the average charge transfer given by

Q�= � � ln �

��i�� ��=0=nj. If the occupation changes from 1→nj, a
single hole is transferred with probability 1−nj while no
charge transfer takes place with probability nj. For this case,
� j���=nj +e−i��1−nj� with the average charge transfer

Q�=nj −1. The results for the two cases can both be written

� j��� = ei��
Q�−nj��1 + �ei� − 1�nj� . �8�

Since we work in the basis where nout is diagonal, the
result for ���� for the general case is simply a product over
the factors, � j���. Taking account of all possible processes,
we arrive at the formula,13,31,34,35

���� = ei�
Q��
j=1

N

e−i�nj�1 + �ei� − 1�nj� . �9�

It is correctly regularized as states unaffected by the pertur-
bation contribute a factor 1 to ����. It is also well suited to
direct numerical calculation.

In the following sections, we will discuss two special
cases where the FCS can be obtained analytically. We red-
erive the known results for these cases by working directly
with the density matrix, nout. Then we show how the FCS for
the general case are easy to obtain by diagonalizing nout nu-
merically. To facilitate the interpretation of Eq. �9�, we
choose a specific form for the scattering matrix S�t�, and
assume that the transmission and reflection amplitudes of the
barrier A�t� and B�t� controlled by the QPC are real. If a bias
voltage V�t� is applied between the leads, its effect is to
introduce an additional phase difference between the states in
the two leads given by the Faraday flux ��t�= e


0
t V�t��dt�.

We incorporate this effect via a gauge transformation applied
to states in the right lead: aR→aRei��t�. The resulting scatter-
ing matrix S�t� is

S�t� = � B�t� A�t�ei��t�

− e−i��t�A�t� B�t�
	 . �10�

A. Bias voltage applied between the leads

The case of a bias-voltage pulse, V�t�, applied across a
barrier with fixed transmission amplitude, A, for 0� t� tf has
been well studied.1,6,7 It has been shown that charge-transfer
processes at zero temperature are made up of combinations
of two elementary events called unidirectional and
bidirectional.7,12 The unidirectional event relates to a single
charge-transfer process associated with the dc component of
the bias voltage V�t�. A single state is occupied on one side
of the barrier and not on the other. This leads to the possi-
bility of the transfer of charge across the barrier but only in
one direction. Unidirectional events contribute to the average
current as well as higher-order cumulants. Bidirectional
events are the consequence of the ac component of V�t� and
relate to the excitation of equal numbers of particles and
holes. These can both be transferred or reflected at the barrier
so that charge can be transferred in either direction. No av-
erage current is generated in this case and only even cumu-
lants are nonzero. The generic formula for the FCS for
charge transfer is12

���� = �
i=1

Nu

�R + Tei����
j=1

Nb �1 + RT sin2� j

2
�ei� + e−i� − 2�� .

�11�

T= �A�2 is the barrier transparency and R=1−T. Nu and Nb
correspond to the total number of unidirectional and bidirec-
tional events, respectively. �= �1 depending on the polarity
of the voltage pulse. The angles � j /2 determine the probabil-
ity of exciting a single particle-hole pair in a bidirectional
event. Nu, Nb, and � j /2 can be computed12 by diagonalizing

matrix hh̃, where h and h̃ are defined as h=2n−1 and

h̃=UhU† with U�t�=ei��t�.
We can understand the form of Eq. �11� by considering

the density matrix of outgoing states, which in the case of
constant transparency has the form

nout�t,t�� = RnL
in�t,t�� + Tei��t�nR

in�t,t��e−i��t��. �12�

We assume that the measurement time is short enough that
we can ignore the equilibrium noise contribution, which is a
logarithmically divergent function of the measurement time
tf.

31 The equilibrium noise is associated with fluctuations in
the number of particles in the left or right lead and occurs
even in the absence of an applied voltage.

The dc component of the voltage pulse, associated with
nonzero Faraday flux �, generates additional occupied par-
ticle �or hole� states in the right lead when compared with the
incoming states in the left lead. The corresponding particle
�or hole�, after impinging on the barrier, will tunnel across
with probability T=A2 or be reflected with probability
R=1−T. This gives rise to so-called unidirectional events.
The eigenvalue of the density matrix for outgoing states in
the left lead is then nj =T, with an average charge transfer
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from right to left of 
Q�=T if j relates to a state above the
Fermi energy, or nj =1−T and 
Q�=−T if j relates to a state
below the Fermi energy. Inserting this in Eq. �9� gives
�u���=R+Tei��, where �= �1 is determined by the type of
transferred charge �particle or hole�.

An example of unidirectional events is provided by the
so-called MES. These excite a number of particles �or holes�
with minimum noise.7,11 The corresponding voltage pulse
V�t� is a sum of Lorentzian pulses: V�t�=� j

N 2� j

�t−tj�2+� j
2 , where tj

and �� j� determine the center and width of the jth pulse, re-
spectively. The unitary transformation in Eq. �10� is

ei��t� = �
j

N
t − tj − i� j

t − tj + i� j
. �13�

Choosing the signs of the � j to be the same leads to N uni-
directional events. For N=1, the pulse in Eq. �13� generates a
single unidirectional event with one particle �electron or
hole, depending on the polarity of the pulse� passing through
the barrier with probability T giving ����=R+Teik�. For
N=2, with the polarities of the two pulses �set by the signs of
the � j� the same, the two unidirectional events are combined
and ����= �R+Tei���2 irrespective of the relative widths
��� j�� or positions �tj�.

The ac component of the voltage pulse, associated with
zero total Faraday flux, gives rise to the so-called bidirec-
tional events—the simplest example of which is given by a
pulse of the type, Eq. �13�, with N=2 and �1�2�0. The op-

erator hh̃ characterizes the differences between the states in
the two leads following the application of the pulse. All
states, which are either both occupied or both empty in the
two leads and which therefore contribute a factor 1 to ����,
are eigenstates of hh̃ with eigenvalue 1 �� j =0�. All other
eigenvalues occur in pairs and are equal to e�i�j.12 In the
basis of the unperturbed states of either of the leads, the state

described by h̃ contains an admixture of the unperturbed
state and independent particle and hole excitations in each of
the two-dimensional subspaces of the basis �labeled by j�, in

which h̃ is block diagonal. Its eigenvalues are e�i�j. Each of
these will lead to eigenvalues in nout of nj and �1−nj�, one
associated with the particle excitation and one with the hole.

The contribution to ���� from each of these
bidirectional events �corresponding to the different j�
is the product over the two factors of the type in Eq. �8�,
one with eigenvalue nj �
Q�=nj� and one with
eigenvalue 1−nj �
Q�=nj −1�: �b���= �1+ �ei�−1�nj�
� �1+ �e−i�−1��1−nj��=1+nj�1−nj��ei�+e−i�−2�. To make
a connection between nj and rotation angle � j /2, we use the

known result12 h= � 0 1
1 0 � and h̃= � 0 e−i�j

ei�j 0 � in the eigenbasis of

hh̃. Substituting h and h̃ into Eq. �12� and diagonalizing nout

explicitly, we obtain nj =
1
2 �

1
2
�1−4RT sin2 � j

2 and

nj�1 − nj� = RT sin2� j

2
. �14�

After taking the product over all events labeled by j,
and adding in the contribution of the unidirectional events,
we recover Eq. �11�. For a given voltage pulse between the

leads and corresponding unitary transformation U�t�, the
� j /2 can be thought of as the rotation angles of
the ground state associated with U�t� and are found

by diagonalizing the hh̃.12,30 The rotated state is an admixture
of the original state, with probability cos2 � j

2 , and the state
with an added particle and hole, with probability sin2 � j

2 . The
factor 1+RT sin2 � j

2 �ei�+e−i�−2� is the weighted average of
the result for the unperturbed state �contribution 1 with
weight cos2 � j

2 � and for the state with an added particle and
hole �contribution �R+Tei���R+Te−i�� with weight sin2 � j

2 �.30

B. Barrier with modulated transparency

Another case for which results in closed form have been
reported is that of a time-dependent barrier between two
leads at the same chemical potential.26,31 The problem
can be mapped onto a special case of a voltage-biased
time-independent barrier with constant transmission
and reflection amplitudes.31 This mapping becomes
explicit once the problem is approached via the density
matrix of the outgoing states. In the absence of a
bias the scattering matrix in Eq. �10� simplifies to S�t�
= � B�t� A�t�

−A�t� B�t� � and the density matrix of outgoing states be-
comes nout�t , t��=B�t�n�t , t��B�t��+A�t�n�t , t��A�t��. Intro-
ducing ei��t�=B�t�+ iA�t� �we are still assuming that A and B
are real�, we insert ei��t� into nout and eliminate A and B. We
obtain nout= 1

2 �ei�nine−i�+e−i�ninei��. Here we have used the
fact that nL

in=nR
in=nin.

Since a unitary transformation on nout does not affect its
eigenvalues, nj, we can study

e−i�nout�t,t��ei� =
1

2
nin�t,t�� +

1

2
e2i��t�nin�t,t��e−2i��t��.

�15�

The relations, Eqs. �12� and �15�, have the same structure.
The FCS of a system with modulated barrier transparency
without a bias between the leads are therefore equivalent to
those for a system with bias voltage applied across a barrier
with constant transmission and reflection amplitudes
A=B= 1

�2
, and Faraday flux �=2�. The FCS for a modulated

barrier transparency can therefore be obtained from Eq. �11�.
In addition, other concepts developed to understand the bias-
voltage case carry over to the modulated barrier case. These
include the geometrical interpretation of the FCS,30 as well
as the MES,11 which, when implemented as a modulation
profile of the barrier leads to the optimal entangler of
electron-hole pairs.31

To calculate ���� for the case of the modulated barrier
from Eq. �11�, we need, as before, to diagonalize the matrix

hh̃=he2i�he−2i� and compute the angles � j /2 from its eigen-
values. Since no bias voltage is applied between the leads,
the system is completely symmetric in lead space. As a result
only bidirectional events �leading to no net average charge
transfer� can occur and all the eigenvalues of he2i�he−2i�

come in pairs. The characteristic function ���� is then given
by
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���� = �
j=1

N �1 +
1

4
sin2� j

2
�ei� + e−i� − 2��

= �
j=1

N �1 − sin2� j

2
sin2�

2
	 , �16�

where N is the number of paired eigenvalues determined
from he2i�he−2i�.

To illustrate the value of this mapping, consider the case
in which the transparency of a barrier is subjected to a sinu-
soidal modulation: A�t�=sin �t and B�t�=cos �t. If the total
number of cycles is large enough, the contribution from the
equilibrium noise �proportional to log tf�� can be neglected.
This problem can be mapped to a case of a barrier with
constant bias voltage with transparency T=1 /2 and
�=tV�t��dt�=2�=2�t corresponding to a constant dc bias
with V=2�.

To obtain the FCS, we need to diagonalize matrix
he2i�the−2i�t�. As this corresponds to a constant dc bias prob-
lem involving two unidirectional events per period, �the
phase changes by 4� per period�, there are two eigenvalues
different from 1 and both are equal to −1. The polarity �par-
ticle or hole� of transferred charge can be inferred from the
requirement that there is no net average charge transfer.
Hence we conclude that the sinusoidally modulated transpar-
ency case is equivalent to one electron and one hole imping-
ing in a single period on a barrier with transmission T=1 /2.
The two processes are independent since both correspond to
unidirectional events in the equivalent bias-voltage problem.
The FCS for constant bias-voltage case are known to be
given by �0�V ,��= �R+Tei���tfV/4� with �= �1 depending
on the polarity of the applied voltage.9,36 The corresponding
FCS for the sinusoidally modulated transparency case is a
combination of two factors �0 one with �=1 and one with
�=−1. This gives

���� = �0��,���0��,− �� = �1 + cos �

2
	�tf/2�

, �17�

which is a result previously obtained by Andreev and Kame-
nev using the Keldysh formalism.26 A barrier operated in this
way acts as a quantum pump which excites exactly one
electron-hole pair per period, provided the logarithmically
divergent equilibrium noise is neglected. The four possible
outcomes per cycle are shown in Fig. 2.

The result, Eq. �17�, is the ac version of the barrier profile
required to generate optimal electron entanglement.31 The
profile

ei��t� = B�t� + iA�t� =
t − i�

t + i�
�18�

generates the FCS ����= �1+cos �� /2. The use of a quan-
tized Lorentzian pulse of the type, Eq. �18�, has the advan-
tage that the equilibrium noise is strictly absent in Eq. �18�.
Although the entanglement generated by Eq. �18� is between
electrons and holes and therefore not useful in quantum com-
putation due to the charge conservation laws,38 the protocol
would be useful if combined with another degree of freedom
�either spin or orbital� because it operates in a one-shot
mode. The difficulty with its operation is associated with the
precise generation of the actual profile. We explore the effect
of possible errors in its experimental implementation in Sec.
III B.

C. Fermi-edge singularity

We discuss here the relation between the FCS of a contact
subjected to sharp bias-voltage pulses and the FES. We map
to the problem of an unbiased contact for which the result for
the FCS is known.

We consider two delta pulses with opposite signs sepa-
rated by tf applied to one lead. The contact has fixed trans-
parency T and reflectance R. The corresponding voltage pro-
file is

V�t� =
�

2�
���t� − ��t − tf�� �19�

with �=const. This pulse induces a phase shift � on the
incoming states of, say, the left lead �measured with respect
to the right one� within time window 0� t� tf and zero
phase shift otherwise. For ��2� and large tf�, the noise can
be written as an expansion in ��tf�−1



Q2�� = 2RT� 2

�2sin2�

2
ln tf� +

�

2�
� + ¯ �20�

The derivation of Eq. �20� is essentially the same as that
given by Lee and Levitov �LL� for the quantum current fluc-
tuations induced by a magnetic field in a metallic loop con-
taining a QPC.36 The FCS for the problem we are consider-
ing have been computed30 but only for the case that the
transparency of the barrier is low. In this section we address
the general problem with arbitrary contact transparency.

As the two electrodes are equivalent, only bidirectional
events occur in this problem. By Eq. �11�, the counting sta-
tistics are

���� = �
j
�1 − sin2� j

2
sin2 �̃

2
� , �21�

where we have defined sin �̃
2 =2�RTsin�

2 . The central problem
is how to compute angles

� j

2 . Equation �21� has the same
form as Eq. �16�, which is that for a barrier with
time-dependent reflection and transmission amplitudes

FIG. 2. �Color online� Four possible outcomes per period from a
sinusoidally modulated barrier transparency. All four outcomes are
equally likely. The particle-hole pair can be on either side of the
barrier or as an entangled pair of particle on one side and hole on
the other.
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B�t�+ iA�t�=ei��t�/2. For 0� t� tf, A�t�=sin�
2 =const and

A�t�=0 if t�0 or t� tf. One interesting complication in this
problem is that the FCS are only well defined if the limit of
increasingly sharp voltage profiles, V�t�, leading to the delta
functions in Eq. �19�, is specified. This is because the shape
of the voltage pulse, leading to the Faraday flux change from
zero to �, affects the number of excitations introduced by the
switching process. In the mapped barrier opening problem,
the precise time dependence of the �rapid� opening and clos-
ing of the barrier matters. An example of a possible profile
for this opening of the barrier is shown in Fig. 3.

For the case that the barrier switching time � is very short
compared to the measurement time tf, we argue that the
switching processes, which excites high-energy ��1 /��
particle-hole pairs, should not interfere with the long-time
measurement process, which leads to the low-energy excita-
tions, predominantly on the energy scale �1 / tf, expected for
a Fermi-edge singularity problem. We make the ansatz that
the FCS can be written as a product of the types of processes
as

���� = �1����2��� �22�

with �2 giving the FES contributions �which are associated
with the shaded region, shown schematically as the shaded
area in Fig. 3�. �1 gives the contribution associated with the
opening profile at t=0 and tf. We focus here on the calcula-
tion of �2 and postpone the computation of �1 to Sec. III B
where numerical techniques are adopted.

The FCS of an unbiased barrier, for which the reflection
amplitude is abruptly changed from zero to the constant
value sin�

2 for a duration tf, is known and was computed
using the bosonization technique.6 The result can also be
found by solving a Riemann-Hilbert �RH� problem39 valid
even at nonzero temperature in Appendix B. The FCS is

�2��� = exp�− ��
2G� �23�

with G and �� being given by

sin
��

2
= sin

�

2
sin

�̃

2
= 2�RTsin

�

2
sin

�

2
, �24�

G =
1

2�2 ln tf� . �25�

The logarithmic terms in Eq. �20� are connected with the
Fermi-edge singularity found in metals.40,41 It is interesting
to note that the form �24� includes the well-known result for
the Anderson orthogonality catastrophe problem in a single
lead42 as a special case. The quantity of interest is the over-
lap 
0 �0�� between �0�, the ground state of an unperturbed
metal and �0��, the wave function of the same metal at a time
tf after switching on a �core-hole� potential. In the simplest
case, the potential can be well described by a single energy-
independent phase shift which is exactly equivalent to the
phase �, with ei�/2=B+ iA associated with the modulated
barrier we have been considering. The overlap can be written
as 
0 �0��= 
0�ei��t��0�=� jcos

� j

2 , where the
� j

2 are the eigen-
values e��j of hei�/2he−i�/2. This is equal to
��2��=� , T= 1

2 �. With �=�, T= 1
2 , and ��=� and we re-

cover Anderson’s result:42 
0�ei��t��0�= ��tf�−�2/�4�2�.

III. GENERAL CASE

In the general case, which is equivalent to having both a
bias voltage between the leads and a time-dependent profile
for the barrier, we are not aware of the existence of a simple
relation mapping the problem onto an equivalent bias-
voltage problem. However, Eq. �9� allows for the calculation
of the FCS as long as the spectrum of the density matrix of
outgoing states is available.13 We can diagonalize nout in Eq.
�6� numerically to find the eigenvalues nj and use Eq. �9� to
compute the FCS.

Numerically, it is convenient to work in the energy do-
main with a discrete energy spectrum. �An alternative is to
compute the dynamics of the system directly. For a finite
system the spectrum is then automatically truncated and the
determinant is properly regularized.43,44� We introduce a pe-
riodic boundary condition in time, with period tp, discretiz-
ing the energy spectrum of the scattering matrix with an
energy separation �0=2� / tp. By choosing tp	 tf we can
compute the counting statistics with large number of cycles,
giving the characteristic function as �������0����tf/tp, where
�0��� is the FCS for single period. We can also set tp� tf and
study the behavior of a device when operated in one-shot
mode.

Fourier transformed into the energy domain, the indi-
vidual matrix elements of A�t� and B�t� are Xmn

= 1
tp

0
tpe−i�m−n��0tX�t�dt, where X stands for A or B. The neigh-

boring rows of Xmn have the same elements though they are
shifted from each other by one column. If X�t� is sufficiently
smooth, by which we mean its Fourier transform decays
faster than �0

�, with ��−1. We can cutoff the Fourier series
and limit the approximated summation within �m−n��M
with M chosen large enough to achieve the desired accuracy.
The truncated matrices A and B are blockwise tridiagonal
with each block size M �M. After some manipulation, the
diagonalization of the infinite-dimensional matrix nout is ap-
proximately equivalent to the diagonalization of a
2M-dimensional matrix in energy space. Details of this pro-
cedure are summarized in Appendix A.

ττ

ft

A

0 t

21 1

FIG. 3. �Color online� Illustrative transmission amplitude A�t�
as a function of time t for the pulsed lead case after mapping to the
equivalent barrier opening problem. The FCS are only well defined
if the exact time dependence, whose limit is the delta function in
Eq. �19�, is specified. Here we show a case where the amplitude,
A�t�, actually overshoots the value sin�� /2�. We argue that the FCS
should be well approximated by a product over two independent
contributions from the two regions denoted by 1 and 2 �shaded
region�.
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In this section, we look at cases where the direct diago-
nalization of the matrix nout allows the study of the FCS of a
tunnel barrier with time-dependent scattering amplitudes
with a bias voltage applied between the leads. We concen-
trate, in particular, on the example of a barrier used as a
low-noise source and study how the noise and degree of
entanglement are affected by deviations from the optimal
pulses which have been proposed.31,45 Mostly, we will study
barrier and voltage profiles which are either combinations �or
close to combinations� of the quantized Lorentzian pulses.
These can be applied as voltage pulses to a lead with Eq.
�13� describing the corresponding Faraday flux ei��t� or with
Eq. �13� describing the barrier profile ei��t�=B�t�+ iA�t�.

A. Quantized pulses

To operate a tunneling barrier as a single-electron source
at low temperatures requires a voltage pulse which excites a
single-electron excitation in one lead. This can be achieved
by creating a MES with a single Lorentzian pulse applied
between the leads. At low temperatures, the noise produced
by such a device comes from two sources: shot and equilib-
rium noise.46 The shot noise for the simplest case of a barrier
with constant transmission probability, T, is proportional to
T�1−T� for a single MES pulse. This suggests that one
should aim to open the barrier fully �T=1� to increase the
chance of single-electron emission. However, if we open the
barrier in an arbitrary way, the equilibrium noise becomes
important. A solution31 is to combine the creation of the
MES, choosing a bias-voltage pulse giving Faraday flux

ei��t� =
t − t0 − i�0

t − t0 + i�0
�26�

in the incoming states, with a carefully chosen opening pro-
file for the barrier which minimizes the total noise.

Since the profile generating the maximal entanglement,
Eq. �18�, as illustrated in Fig. 4�a�, fully opens the barrier
twice without any equilibrium noise contribution depending
logarithmically on tf, a first guess is that it might also work
as a possible profile for the opening of the barrier when used
as a single-electron source. However, the barrier opening
scheme based on Eq. �18� is not ideal for a single-electron
emission. Though the logarithmic term in the equilibrium
noise is absent, the profile does generate background noise
with �see Eq. �16�� 

Q2��0= �2 log �

��i��2 =� j
N 1

2sin2 � j

2 �
N
2 . For the

profile, Eq. �18�, and N=1 and �=� we find 

Q2��= 1
2 which

is actually the maximum for a single pulse.
We consider instead a pair of such pulses

ei��t� =
t − t1/2 − i�1

t − t1/2 + i�1

t + t1/2 + i�2

t + t1/2 − i�2
, �27�

where the separation of the two pulses �with widths �1 and
�2, respectively� is t1. A little algebra shows that A�t� and
B�t� do not change sign only if �1=�2 and �1 / t1�

1
2 + 1

�2
. Cor-

responding typical profiles are shown in Figs. 4�b� and 4�c�.
The ratio �1 / t1= 1

2 + 1
�2

gives a transparency of the barrier
which has a single maximum with A=1 at t=0, as shown in
Fig. 4�c�. We have found empirically that this separation

gives the best combination �low total noise and highest prob-
ability for the transfer of one electron�. Exciting a single
excitation in the incoming states of one lead and coordinat-
ing the timing of this excitation with the opening of the
barrier, allows the single-particle excitation in the incoming
states to impinge upon the barrier when it is fully open. An
advantage of the profile, Eq. �27�, is that, owing to cancella-
tion between the two components �at t=−t1 /2 and t= t1 /2� at
long times, the transmission amplitude A�t� approaches zero
faster than for the profile, Eq. �18�. In addition, the noise
generated by this opening profile 

Q2��0�0.23, which is
less than half that generated by Eq. �18�. We expect that the
profile, Eq. �27�, with an optimally chosen ratio for t1 /�1,
should be a good candidate for designing an on-demand
single-electron source at ultralow temperatures.

For �1 / t1= 1
2 + 1

�2
and with a single pulse ei�=

t−t0−i�0

t−t0+i�0
ap-

plied to the lead, we have diagonalized the density matrix
nout numerically. Figure 5�a� shows results for the noise


Q2�� in the system as a function of the separation t0 be-
tween the center of the MES pulse and the maximum of
barrier transparency �for which A=1 at t=0�. The maximum
values of the noise occurs when t0��1 and the transparency
coefficient is almost 1/2. This is the regime where the barrier
is acting as a 50% beam splitter. The minimum of 

Q2��
corresponds to t0=0 when �A�2=1. At t0=0 the transferred
charge as well as the quality factor 
Q� / 

Q2�� attains its
maximum. Figure 5�b� shows the average transferred charge

Q� as a function of t0. If the pulse applied to the lead is
narrow compared to the opening time of the barrier
��0	�1�, the minimum value of the noise is essentially set by
the noise associated with the opening of the barrier, namely,


Q2��0. The transferred charge approaches 1 when
�0 /�1→0 and the probability distribution for transferred
charge, Pn, approaches Pn�1

0 �the sign depends on the polar-
ity of the voltage pulse applied to the incoming states in one

−5 0 5
−1

0

1

−5 0 5
−1

0

1

(a)
(b)
(c)
(d)

B

t/τ

A

t/τ
FIG. 4. �Color online� Transmission coefficients A�t� for some

opening profiles for a barrier. The centers of the pulses are at t=0
with time scaled in units of the pulse width �. �a� Single Lorentzian
pulse �see Eq. �18�� for optimal entangler. �b� Two Lorentzian
pulses with opposite polarities �see Eq. �27�� with �1=�2=� and
pulse separation t1 /��0.6. �c� Same as in �b� with separation
t1 /��0.83 �optimal�. �d� Same as in �b� with t1 /��1.2. The inset
shows the corresponding reflection amplitude B as a function of t /�.
Only in cases �b� and �c� do both A and B remain positive during
the pulse lifetime.
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of the leads� is shown in the lower panel in Fig. 5. Here Pn�1
0

is the probability distribution for charge transfer associated
with the opening of the barrier without a bias pulse applied
between the leads.

Figure 5 shows that, when �1 /�0=1, the emission of two
electrons is strongly suppressed. If it was important to have a
source which only emitted single electrons and there was a
method for discarding “nonevents” in which no electron was
emitted, this protocol would work well. The suppression of
double electron emission can be understood as follows. The
width of pulse determines the energy profile of the excited
particles or holes. When �0��1, the particle excitation in-
duced by the changing barrier profile has the same energy
profile as that of the incoming excitation induced by the bias
voltage applied between the leads. As the two pulses are
coincident in time the Pauli exclusion principle leads to de-
structive interference between the two excitations in one lead
and either only one particle or no particle will be transmitted
through the QPC as a result.

The profile, Eq. �27�, does not involve a change in sign of
either A�t� or B�t� and, consequently, should be easier to
implement experimentally than the profile, Eq. �18�. We

therefore consider how well the profile, Eq. �27�, might work
as a �nonoptimal� electronic entangler. Figure 6 shows the
probability of electron-hole pair production Pn versus pulse
separation t1 /�1. The vertical line corresponds to
t1 /�1=1 / � 1

2 + 1
�2

��0.83, beyond which a sign change in A�t�
is necessary and the experimental implementation is ex-
pected to be more involved. We see that the emission of two
electron-hole pairs is very unlikely. The only two significant
outcomes are: no excitation, created with probability P0, and
the creation of a single �entangled� electron-hole pair which
is created with probability P1. The corresponding entangle-
ment entropy at this point is S= P1SBell�0.23, i.e., just under
half the theoretical maximum.

B. Nonquantized pulses

So far, we have discussed �combinations of� quantized
Lorentzian pulses applied to a lead �see Eq. �13�� and/or
barrier opening profiles �see Eq. �27�� that excite a bounded
number of electron-hole pairs without the accompanying
equilibrium noise which grows logarithmically with t0. Here,
we focus on the increased noise resulting from deviations
from the ideal quantized pulses.

We consider the case of a modulated barrier with the fol-
lowing nonquantized opening profile

B�t� + iA�t� = ei��t� = � t − i�1

t + i�1
	�1� t − t0 − i�2

t − t0 + i�2
	�2

. �28�

where �1,2�R. We look at the simplest case �2=1−�1 and
�2=−�1 and choose �1=�2=�. In both cases t0 plays the role
of the measurement time tf, provided t0��. The profile, Eq.
�28�, with t0�� describes a barrier with a transmission am-
plitude, A, which changes from 0 to sin 2�� within a period
of � around t=0 and closes at t= t0. There will then be a
contribution to the noise which increases logarithmically
with t0 �this is just the equilibrium noise contribution�. The
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FIG. 5. �Color online� Upper panel: single unidirectional event
in a quantum contact with tunable transparency �numerical calcula-
tions�. �a� Transparency of the barrier as a function of time given by
Eq. �27�. We also show an MES applied to a lead, Eq. �26�. �b�
Average charge transfer 
Q� between the two leads as a function of
t0. The maximum of 
Q� is around 0.96 for the narrowest MES
considered �1 /�0=16. �c� Noise in a biased contact with transpar-
ency, Eq. �27�, as a function of t0 /�1. The minimal value of the
noise corresponds to t0=0 and, for the narrowest MES pulse
��1 /�0=16�, it almost drops to the value due to barrier modulation:


Q2��0 �dotted line�. The two maxima in the noise occur when
t0 /�1�1 and the transparency is almost 1/2. Lower panel: probabil-
ity distribution Pn for �1 /�0=1, 4, and 16 at t0=0, as well as the
probability distribution generated by profile, Eq. �27�, only without
the MES applied on the lead. We see that in the limit �1 /�0→, Pn

approaches Pn�1
0 . �See text.�
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FIG. 6. �Color online� Evolution of the probability for electron-
hole pair emission as a function of pulse separation t1 /�1 for a
barrier profile, Eq. �27�, with �2=�1. The dashed line gives the
probability that nothing happens �P0�. The solid line is the prob-
ability of generating a single entangled electron-hole pair �P1�. The
dotted line show the probability for two particle-hole pair emission
�P2�. The vertical cut is the position where the single-electron
source profile, Eq. �27�, operates.
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mapping between the case of a barrier profile and a voltage
bias across a junction with constant transparency means that
this profile also models nonquantized voltage pulses applied
between the leads. This mapping includes a doubling of the
total phase change 2�=� �see Sec. II B�, which means that
Eq. �28� describes two voltage pulses with Faraday flux
4��1,2. If the �i are not both integer or half integer, there is
a net phase shift of 2��1 and 2���1+�2� between the rotated
and the unperturbed states with consequent FES effects.

The FCS for the profile, Eq. �18�, which gives the opti-
mum level of entanglement, are equivalent to those for two
quantized Lorentzian pulses, when the problem is mapped to
the case of a junction with a bias, because of the associated
doubling of the phase 2�=�, This suggests that the pulse,
Eq. �18�, applied to the barrier may be a special case of two
separate pulses, each of which corresponds to a single-
quantized pulse in the case of a bias between the leads. In
particular, a pulse

ei��t� = � t − i�1

t + i�1
	1/2� t − t0 − i�2

t − t0 + i�2
	1/2

, �29�

consists of two pulses centered at 0 and t0 with widths �1 and
�2. The absence of a logarithmic contribution to the noise in
this case should be expected because the barrier is closed at
all times except for a period � around 0 and t0. The effect of

pulses, Eq. �29�, on the states of the system can be found by
working in the basis in which the scattering matrix in Eq.
�10� is diagonal. With A and B both real ��=0 as there is no
applied bias�, the scattering matrix is diagonal for all times in
the basis c1,2= �cL� icR� /�2 and its eigenvalues as a function
of time are given by the values of e�i��t� in Eq. �29�. The two
components of the pulse centered on t=0 and t= t0 induce
phase shifts of �� in each channel and are individually as
far as possible from quantized pulses. However their effect
on the FCS of the charge transfer between the left and right
leads depends only on the difference in phase shift between
the two channels and each of the two components therefore
contribute to the FCS as quantized pulses.

The noise generated by the opening profile, Eq. �28�, with
�1=�2=� is shown in Fig. 7�a� for the case �2=1−�1 and in
Fig. 7�b� for the case �2=−�1. In both these cases the penalty
for missing quantization of the pulses is small. The increase
in noise at fixed t0, as �1 deviates from integer or half-integer
values, is slow. �For example, with �1=1 /2 and t0 /�=50, a
10% deviation in �1 introduces additional noise of only of
2% of the quantized value.� This suggests that any reason-
able experimental implementation of such pulses should al-
low the exploitation we have described �as entanglers or as
electron sources�. Case �a� corresponds to two Lorentzian
�nonquantized� pulses with the same polarity separated by a
time t0. There are two peaks, the height of which grow
logarithmically with t0, with a flat valley in between. When
�1=1 /2 the profile is that of Eq. �29�, and we find, as ex-
pected, results equivalent to the profile, Eq. �18�, i.e., a total
noise equal to 1/2 and independent of t0. For other values of
�1 the noise grows with a logarithmic dependence on t0.
When �� t0, the problem is that of two equivalent FES prob-
lems: the effect of the first pulse is to give rise to scattering
phase shifts of 2��1 and −2��1 in the two independent
channels in which the scattering matrix S�t� is diagonal. In
case �b� there are two oppositely polarized �nonquantized�
Lorentzian pulses. At small pulse separation, t0, the two
pulses partially cancel and the noise is low. In this limit the
barrier transparency, T�t� remains close to zero and vanishes
when t0=0. Saturation of the noise at some finite value for
large t0 /� occurs only when �1=1 /2 and 1, when the two
components of the pulse contribute to the FCS and each
corresponds to quantized MES in the equivalent lead prob-
lem. For all other values of �1, we again find noise which
grows with the logarithmic dependence with t0 expected for
a FES.

Another issue with the quantized Lorentzian pulses, used
either as voltage pulses or to open the barrier, is that they are
defined over an infinite time interval. In practice, the long-
tail behavior will be restricted to some closed interval
�−t0 , t0� and this cutoff is likely to introduce additional noise.
We have found, however, that amending the profile at points
�t0 and appending an exponential tail Ae�t�=A�t0�e−�t−t0�/� to
model this effect that there is virtually no difference between
this trimmed profile and the ideal profile. This suggests that
such deviations from ideal pulses are unlikely to affect the
operation of devices in this regime.

Finally, we return to the problem introduced in Sec. II C,
where two delta pulses �see Eq. �19�� with opposite polarities
were applied to one incoming channel. We argued that the
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FIG. 7. �Color online� The noise produced in the charge transfer
across an unbiased barrier when its profile is varied according to
Eq. �28�. Results are shown as a function of the separation, t0 /�,
between the two nonquantized pulses at t=0 and t= t0, and of the
exponent �1 with �a� �2=1−�1 and �b� �2=−�1. In case �a� the
values �1=0.5 and �1=1 correspond to quantized pulses �when
mapped to the problem of a biased lead, there is a doubling of the
total phase change�. The noise for all other values of �1 increases
logarithmically with t0. This is the equilibrium noise contribution.
In case �b� the noise �1=0.5 and �1=1 saturates when the pulse
separation t0 is much larger than the pulse widths �. For all other �1

there is again the equilibrium noise contribution which grows loga-
rithmically with measurement time t0.
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FCS could be written as the product of two factors, Eq. �22�.
One factor, �1, is associated with the sudden jump in scatter-
ing phase shift and the other, �2, with the FES problem. To
compute �1���, we need to specify the exact shape of the
Dirac delta function. Here we use a Lorentzian in the limit of
vanishing width �→0,47

V�t� =
�

2�
� �

t2 + �2 −
�

�t − t0�2 + �2� . �30�

The FCS are fully determined by the spectrum of nout, or
equivalently, the eigenvalues e�i�j of hh̃ in the form sin2 � j

2 .
We note that this problem is equivalent to a limiting case of
the nonquantized barrier profile, Eq. �28�, shown in Fig. 7�b�:
after mapping, the barrier profile in Eq. �28� has
�1=−�2= �

4� and �→0.
In the following, we show that the factorization of the

counting statistics which we propose, Eq. �22�, is apparent in
the separation of the values of sin2 � j

2 . We rewrite
�=2�k+�0, where k�Z and �0� �0,2��. When �0=0,
from Eq. �11� the counting statistics are described by k

bidirectional events with eigenvalues such that sin2 � j

2 =1 with
j=1, . . . ,k. Hence �1���= �1−4RT sin2 �

2 �k. On the other
hand, for states which contribute to Eq. �23�, they are rotated
with eigenvalues e�i�j such that sin2 � j

2 is small �but total
number of such eigenvalues is large�. For the case when
�0�0, we have verified numerically that the k pairs of

eigenvalues of hh̃ with e�i�j remain. In addition there is one
pair of eigenvalues associated with �0 which gives sin2 �0

2 in
the range �0,1�. Here �0 /2 is the rotation angle associated
with the phase �0. As a result, the total FCS, Eq. �21�, should
be well approximated by the form

���� = �
j=0

 �1 − 4RT sin2� j

2
sin2�

2
	

� �1 − 4RT sin2�0

2
sin2�

2
	�1 − 4RT sin2�

2
	k

�2��� .

�31�

This value of �0 can be computed numerically once for a

simple case such as k=0, and tabulated over the range
�0� �0,2��.

To test above idea, as well as to obtain the unknown ei-
genvalue sin2 �0

2 , we compute the FCS and the values sin2 � j

2
for Eq. �30� numerically for different total phase shift � in
Eq. �19�. The pulse separation is fixed at t0 /�=500 and the
contact transparency is T=1 /2. With cutoff energy � as the
only fitting parameter, the ansatz, Eq. �31�, agrees with the
numerical result for ���� in the parameter space �� ,�� ev-
erywhere with a maximum difference of 3%. This agreement
justifies our decomposition of ���� based on the separation
of eigenvalues of nout. The evolution of sin2 �0

2 with � is
drawn in Fig. 8�a� and echoes that reported for a tunnel junc-
tion driven by a sinusoidal voltage as a function of the volt-
age amplitude.48 As � increases, the value sin2 �0

2 increases
gradually and saturates at 1.

The noise can be computed using Eq. �31� and is



Q2�� = 2RT� 2

�2sin2�0

2
ln t0� + k + sin2�0

2
� . �32�

In Fig. 8�b� we show the noise computed from three ap-
proaches: �i� exactly computed numerically from Eq. �9�; �ii�
using out ansatz, Eq. �32�, and �iii� from the expansion used
by LL, Eq. �20�. The cutoff energy � is used as fitting pa-
rameter to give the best agreement with the exact result. The
similarity between the noise produced here and the noise
generation in Fig. 7�b� for fixed tf can be understood using
the mapping between the problem we are considering here of
an applied bias voltage and that of a modulate barrier profile
discussed in Sec. II B. In both cases the contribution propor-
tional to the log t0� is suppressed at quantized phase shift �.

The differences between the two approximate treatments
and the exact results are associated with the “large” eigen-
values. We define the quantity 

Q2��x= 

Q2��nu−2RTx���
with x���= �

2� for the expansion, Eq. �20�, and x���=k

+sin2 �0

2 for our ansatz, Eq. �31�. 

Q2��nu is the exact value of
the noise computed numerically. According to Eq. �20� as
well as Eq. �32�, 

Q2��x is proportional to sin2 �

2 , and, if the
cutoff energy � is independent of �, is periodic. It should
also vanish at �=0,2� ,4�. . .. We show 

Q2��x for the two
cases, respectively, in Fig. 8�c�. We see that the ansatz, Eq.
�32�, works qualitatively correctly while the expansion, Eq.
�20�, gives the wrong positions for the minima. However, we
find that 

Q2��nu is not strictly periodic �the amplitude of the
oscillation decreases�. We attribute this to the fact that the
separation into the two factors �1 �corresponding to k large
values of sin2 � j� and �2 �only small values� is not complete
and that the value sin2 �k+1 /2 can be significant particularly
for small k.

IV. CONCLUSION

We have discussed the FCS of the charge transferred
across a quantum point contact. We have illustrated the
power of a mapping between the case of a biased barrier with
constant transmission and reflection amplitudes and the case
of a barrier with time-dependent profile but no bias. With this
mapping we have showed that known results for the two
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FIG. 8. �Color online� �a� Evolution of the extra eigenvalue

sin2 �0

2 with � in Eq. �19�. �b� Noise computed from three ap-
proaches: numerics �dash dotted�, ansatz, Eq. �32�, �solid�, and LL’s
result, Eq. �20� �dashed�. �c� 

Q2��x �see text� computed for LL’s
result and ansatz, Eq. �32�.
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cases, which had been previously obtained using different,
and generally involved calculations, can be understood using
the basis of quantized Lorentzian pulses7 or11 MES. Ex-
amples include the optimal protocol for electron
entanglement,31 the FCS of a sinusoidally driven barrier,26

and the Fermi-edge singularity.41

For the purposes both of conceptual understanding and
computation, we have argued that the problem is simplest
when approached through the eigenvalues of the density ma-
trix of the outgoing states in one of the leads. For the general
case, which corresponds to applying both a bias and varying
the barrier profile with time, we have developed a numerical
scheme for computing exactly the FCS for a device and used
this to compute the FCS for a tunnel barrier operated as an
electron source. We have also studied how the deviation
from an ideal pulse affect the quality of operation of a device
with low noise or an entangler. We showed that the noise
levels were remarkably insensitive to deviations from quan-
tized Lorentzian pulses associated with the long-time behav-
ior. For deviations away from the quantization of the pulses
in the case of a modulation of barrier profile, we found that,
as expected, this led to the reappearance of the equilibrium
noise contribution, which increases logarithmically with bar-
rier opening time �see Fig. 7�.
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APPENDIX A: NUMERICAL DIAGONALIZATION OF EQ.
(6)

We describe the numerical procedure for diagonalizing
nout in Eq. �6�. We need a discretized finite-dimensional ex-
pression for XnX†, where X stands for the transmission and
reflection matrices A and B in frequency space. n is an
infinite-dimensional diagonal matrix with elements
nmn=�mn��−m+��, where ���0, to avoid m=0 in the �
function. The matrix X is blockwise tridiagonal

X = �� � �

X2 X0 X1

� � �

� ,

where X0,1,2 is square matrix with truncated dimension M
�see main text�. X1�X2� is lower �upper� triangular matrix
with null diagonal elements.

Exploiting the property B�t�B��t�+A�t�A��t�=1, which in
frequency space states BB†+AA†=I �I is the infinite-
dimensional identity matrix�, we find the following proper-
ties for the finite block submatrices with dimension M:
�i=0

2 �BiBi
†+AiAi

†�=I, B2B0
†+B0B1

†+A2A0
†+A0A1

†=0, and
A1A2

†=B1B2
†=0. Compute nout in Eq. �6� in frequency space

and remove the part equivalent to nin at low and high ener-
gies, we arrive at a much simplified form of nout suitable for
numerical diagonalization

nout = �B1B1
† + A1A1

† B1B0
† + A1A0

†

B0B1
† + A0A1

† I − B2B2
† − A2A2

† 	 . �A1�

The sought-after spectrum, nj, is obtained by diagonalizing
Eq. �A1� directly.

APPENDIX B: RIEMANN-HILBERT SOLUTION TO THE
FCS FOR BARRIER OPENING AT NONZERO

TEMPERATURE

Here we give a brief derivation of the FCS for the pure
opening problem �region 2, Sec. II C� within the Riemann-
Hilbert approach at finite temperature. The scattering matrix
S�t� in Eq. �23� takes the form

S�t� =� cos
�

2
sin

�

2

− sin
�

2
cos

�

2
�, for t � �0,tf�

and equals the identity otherwise. Following the notation in
Refs. 9 and 10, we introduce the matrix R���=Sei�LS†e−i�L,
with L= � 1 0

0 0 �. The characteristic function ln � reads

ln ���� = Tr�n ln R� + Tr�ln�1 − n + nR� − n ln R� ,

�B1�

where Tr operates on both time and channel space. n is the
fermionic operator at finite temperature 1 /�

n�t,t�� =
i

2�

�/�
sinh���t − t��/� + i0�

.

Since there is no average charge transfer, the first term of Eq.
�B1�, Tr�n ln R�= i�
Q�, is equal to zero. The FCS is given
by the second term,

ln ���� =
i

2�
�

0

�

d�� dt tr�d ln Y+

dt

d ln R

d�
� ,

where tr is a trace over channel space only. The Riemann-
Hilbert solution Y�z� is a bounded matrix-valued analytic
function in the strip −� /2� Im z�� /2 except along the cut
z� �0, tf�, where Y−�t�Y+

−1�t�=R��� Y+�t��Y�t+ i0�, and
Y−�t��Y�t− i0� �see Refs. 9, 10, and 49�. Making the substi-
tution sin

��

2 =sin�
2 sin�

2 , R��� can be diagonalized in a time-
independent basis with eigenvalues e�i��. Using explicitly
the finite-temperature solution of the RH problem,49

Y+�t� = exp� 1

2�i
�

0

tf

dt�
cosh��t/��
cosh��t�/��

� ln R/�
sinh���t − t��/���

we obtain

ln ���� = −
��

2

2�2 ln� sinh��tf/��
sinh���−1/���

with � as a cutoff. Taking the zero-temperature limit �→,
we arrive at the characteristic function, Eq. �23�, along with
definitions, Eqs. �24� and �25�.
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